Mrs. Logan Advanced Math Week 16: December 4-8					
Module 3: Two-Dimensional Geometry Topic D: Scale Drawings and Dilations and Topic E: Similarity					
	Monday December 4th	Tuesday December 5th	Wednesday December 6th	Thursday December 7th	Friday December 8th
Lesson	Module 3 Topic D Quiz	Lesson 23: Using Lined Paper to Explore Dilations	Lesson 24: Figures and Dilations	Lesson 26: Dilations on the Coordinate Plane	Lesson 27: Similar Figures
Pages	291-369	373-388	389-403	413-430	431-448
We will...	understand the scale factor as the unit rate and how a reduction or enlargement is producted.	use parallel lines to find the images of segments under a dilation and refine our understanding of the properties of dilations.	use properties of dilations to find images of many different figures under a dilation	introduce cooridnates to the grid and use them to precisely locate images of points under dilations.	describe sequences that show two figures are similar.
Bell Ringer	Quiz Prep	Center of Dilation	Dilation of a Triangle	Dilation on a Grid	Similarities and Differences
Exit Ticket	Quiz Feedback	Correct Location	Segment Length	Find Coordinates	Sequence of Rigid Motions
I will...	compare areas of images and scale drawings and find distances between images and scale drawings using the scale factor.	draw the image of a segment under a dilation and learn properties of dilations.	draw images of figures under dilations with various scale factors.	apply dilations and scale factor centered at the origin on the coordinate plane.	identify properties of similar figures to determine if figures are similar.
Reminders					
	7.G.A.1. Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.				
	8.G.A.3. Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.				
State	8.G.A.4Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)				
	8.G.A.5Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.				
	8.G.B.7Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.				

